Rami Moussa Mechanical Option Advisor: Professor Treado 10/23/10

Peirce Hall, Kenyon College

Technical Report 2:

Building and Plant Energy Analysis Report

Table of Contents

Executive Summary
Design Load Estimation
System Overview
Exterior and Interior Design Conditions
Table 1. Interior Design Temperatures
Table 2. Thermal Properties of Existing and New Envelope Components
Interior Loads
Table 3. Occupant Load Contribution
Ventilation and Exhaust Rates
Table 4. Ventilation Rates
Results and Analysis5
Table 5. Major Area Populations
Table 6. Overall Plant Requirements
Annual Energy Consumption and Operation Costs
Basis of Analysis
Table 7. Utility Cost Rates
Annual Cost by System
Table 8. Overall Utility Expenses
Table 9. Annual Load Cost Breakdown by System
Graph 1. Monthly Utility Usage
Graph 2. Monthly Utility Cost8
Chart 1. Electrical Cost Breakdown
System Emission Rates
Table 10. Total Emission Factors for Delivered Electricity (Table 3
of National Renewable Energy Laboratory, Source Energy
And Emission Factors for Energy Use in Buildings, M.
Deru and P. Torcellini, 2007.)
Table 11. Eastern Interconnection Emissions for Delivered Electricity
Table 12. Emission Factors for On-Site Combustion in a Commercial10
Boiler (Table 8 of National Renewable Energy Laboratory, Source
Energy and Emission Factors for Energy Use in Buildings, M. Deru
and P. Torcellini, 2007.)
Table 13. System Yearly Pollutant Emission
Appendix
A.1 Model Design Information
A.2 Computed vs. Design Document Load and Ventilation Indices

Executive Summary

The purpose of this report is to analyze the components of the Peirce Hall mechanical system that influence and provide service for heating and cooling loads and ventilation rates. In this analysis a Trane Trace 700 model was created to approximate characteristics of the mechanical system such as heating and cooling capacities, energy consumption of major system components, utility costs, and emission rates. A design model was provided by Syska Hennessy Group, Inc. to compare calculated values with. This model however, did not contain energy analysis information.

The Peirce Hall mechanical system is composed of 7 air handling units, 1 major fan coil unit and a collection of unit and cabinet unit heaters. Systems were assigned to the same zones as in design documents. However, some zones may have been designed to be served by a different unit through the design process and gotten changed in the design model. Therefore there are some inconsistencies between the design model and analysis model that resulted in larger and smaller supply requirement between systems. These results can be most easily found in Table A.2 Computed vs. design Document Load and Ventilation Indices.

Due to the multiuse functionality of Peirce Hall, many spaces required their own occupancy and air flow specification for internal loads to be calculated to reasonable accuracy. Spaces were more individually designed to analyze zone characteristics. A 250 occupant dining hall may have been adjacent to a kitchen, servery, and lobby. The block cooling load was approximated to within 10% of the design model and the heating load within 3.5%.

Service information was not able to be obtained from Kenyon College, so general data by the name "Northern Power Company," from templates provided in Trane Trace were used. The annual utility cost per square foot was calculated to be 1.378 \$/ft2. Pollutant emission data can be found on pages 9 and 10.

Design Load Estimation

System Overview

Peirce Hall at Kenyon College in Gambier, Ohio uses a variety of cooling and heating systems to serve the multipurpose facility's diverse spatial types. Due to the large variety of types of spaces adjacent to one another, spaces were unable to be zoned together and the building had to be analyzed in a space by space manor. Zones were considered to be conditioned at all hours in the design model hence, were similarly modeled in the analysis model. 4 air handling units serve as the means for cooling in the building and 3 additional air handling units provide makeup and ventilation air for kitchens and the basement. Steam is supplied to unit heaters and cabinet unit heaters to serve as the primary providers of heat to spaces. Production of steam is assumed to be coal fueled.

Exterior and Interior Design Conditions

Gambier, Ohio is a small town in central Ohio. Yearly weather data from Columbus, Ohio was used to approximate the climate of Gambier, as it is located just 55 miles to the Northeast. Conditions used for analysis are 0.4% and 99.6% cooling and heating dry bulb temperatures and can be viewed in Table 1. Interior design temperatures for the majority of spaces including dining rooms, offices, the computer lab, and music room use the same interior conditions. Kitchens have a higher cooling dry bulb temperature and a lower heating dry bulb as recommended by 2009 ASHRAE Handbook of Fundamentals.

Interior Design Temperatures				
Space Type	Cooling [°F]	Heating [°F]	RH [%]	
General	75	72	50	
Kitchen	78	70	50	

Table 1. Interior Design Temperatures

The Peirce Hall project was not simply new construction, but a renovation, expansion, and addition. Hence existing construction types and materials are used in conjunction with newer, much more efficient materials. Due to differences in construction materials between the existing and newly constructed building envelope components, separate thermal resistances were necessary to reasonably analyze building envelope loads. Material properties can be found in Table 2. Infiltration rates were assumed to be "Neutral, Tight Construction" allowing 0.3 air changes per hour.

Thermal Properties of Existing and New Envelope Components					
Envelope Component	U-Value by Cor	Shading Coefficient			
Envelope Component	Existing	New	Existing	New	
Exterior Wall	0.36	0.085			
Window	0.95	0.29	0.95	0.44	
Roof	0.1	0.068			

Table 2. Thermal Properties of Existing and New Envelope Components

Interior Loads

Peirce Hall's primary use for Kenyon College is as a dining hall. As a result, the loads generated within spaces such as occupant and lighting loads impacted cooling requirements significantly. Most occupancy values were taken from the architectural design drawings. These values were occasionally substituted with values that were more realistic to the intended use of the space. An example of this scenario is in lower dining lobby. Here, what would be considered a corridor with 0 occupants contains sitting areas that can host up to 32 occupants. Interior load contributions from occupants are based on activity levels in spaces. Load values can be found below in Table 3.

Occupant Load Contribution				
Space Type	Sensible [Btu/h]	Latent [Btu/h]		
Cafeteria	275	275		
Kitchen	275	275		
Mechanical Room	250	200		
Class Room	250	200		
Office Space	250	200		
Rest Room	245	155		
Storage	245	155		

Table 3. Occupant Load Contribution

Heat emitted by lighting was assumed to be the input wattage to lamps. Therefore constructed lighting power densities were used to approximate internal heat gains from lighting. Additional miscellaneous loads were necessary to account for large appliances in some spaces. Offices use a medium load density of 1 Watt per square foot (W/SF) and the computer lab uses a medium/heavy load density of 1.5 W/SF to represent general office equipment. Spaces with more demanding electrical equipment like the pub support, kitchen, servery, and dish room use a 2 W/SF load density.

Ventilation and Exhaust Rates

Ventilation rates used in the original system design for Peirce Hall air handling units were very generous. Values are a mix of occupant and area based and can be found in the following table. Highly occupied spaces include space types such as the pub, dining areas, lounges, and the kitchen. Medium occupancy spaces include preparation areas, the computer lab, and the servery area.

Ventilation Rates			
Space Type	Rate		
High Occupancy	20 [cfm/person]		
Medium Occupancy	$15 [cfm/ft^2]$		
Storage	$0.15 [{\rm cfm/ft}^2]$		
Circulation	$0.05 [{\rm cfm/ft}^2]$		

Table 4. Ventilation Rates

Results and Analysis

A design load calculation was previously prepared by Syska Hennessy Group, Inc. One discrepancies that distinguishes the analysis model from the design model is the population values used in select spaces. Rather than using occupancy statistics from the design energy model, most were taken from the architectural design drawings. The difference in total population between models is 123 occupants where the analysis model is designed for the larger occupancy. Major occupancy differences can be found in Table 5. The greatest differences in space occupancy occur in the spaces designed for the largest occupancy. The provided model was most likely designed to anticipate that the space would never be fully occupied. In the case of the main dining hall, The Great Hall, the provided model greatly over compensates for the architectural design occupancy. This could also be an attempt to estimate the most realistic occupancy possible.

Major Area Populations				
Room Name	Area [ft ²]	Design Population		
Koolii Naine	Alea [It]	Analysis	Design	
Pub	4001	265	110	
Servery	5002	193	104	
Student Org. Lounge	359	24	8	
Great Hall	4148	277	350	

Table 5. Major Area Populations

A comparison of computed loads versus design document load and ventilation indices can be found in Table A.2. An overall comparison of heating and cooling loads can be found below in Table 6.

Overall Plant Requirements							
Load Type	Cooling [ft ² /ton]		Difference	Heating	[MBH]	Difference	
Load Type	Analysis	Design	Difference	Analysis	Design	Difference	
Block	265.7	242.5	9.57%				
Peak	278.7	252	10.60%	4.483	4.329	3.56%	

 Table 6. Overall Plant Requirements

Annual Energy Consumption and Operation Costs

Basis of Analysis

Cost rates for utilities could not be obtained from Kenyon College for Peirce Hall's energy model. Therefore the Northern Power Company template provided by Trane Trace 700 has been used for this analysis. A summary of this template's values can be viewed in Table 7. The price of coal is assumed to be the 2.26 dollars per million Btu, representing the June 2010 price from the U.S. Energy Information Administration 2010 Monthly Energy Review.

Utility Cost Rates				
Utility Type	Cost [\$/kW]			
Electric Demand On Peak	8.13			
Electric Consumption On Peak	0.0319			
Gas On Peak	0.466			
Water	0.0001			
Electric Demand Off Peak	5.87			
Electric Consumption Off Peak	0.024			
Table 7 Utility Cost P	atas			

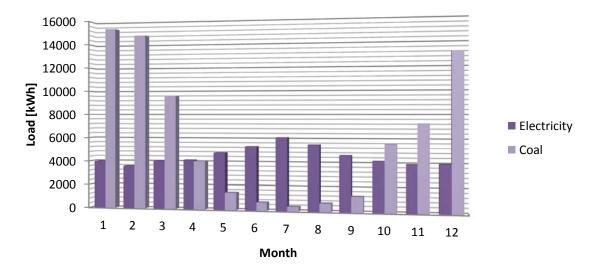
 Table 7. Utility Cost Rates

Details on the modeled performance statistics of the scroll type electric chiller and the provided coal steam system are located in Figure A.3.

Annual Cost by System

A cost analysis was not set up in the design model, however was performed on the analysis to study the operation and consumption costs resulting from use of electricity and coal. From the energy requirements displayed in Table 8, it is clealy evident that more heating is required than cooling in Peirce Hall. Gambier, Ohio is a very cool climate in winter months and the existing exterior wall's poor insulating characteristics expel a great amount of heat. In terms of dollar value, the cost of heating is double that of cooling. Therefore, during cold months large rises in heating costs are expected, where during hot months there are lower rises in electric costs. This energy and cost relationship is displayed in Table 9, Chart 1, and Graph 1.

Overall Utility Expenses			
T 14:1:4++	Energy 10 ⁶	Cost/yr	
Utility	[Btu/yr]	[\$/yr]	
Coal	7,423.90	16,778.00	
Electricity	5,415.00	75,066.00	
Total	12,838.90	91,844.00	
Annual Cost/ft ² [\$/ft ²] 1.378			


Table 8. Overall Utility Expenses

Electrical Cost Break Down				
Load	Energy 10 ⁶ [Btu/yr]	Cost/yr [\$/yr-ft ²]	Load Base %	
Primary Heating*	7,587.90	0.27	59.10%	
Primary Cooling**	438.05	0.09	3.41%	
Cooling Tower	121.01	0.03	0.94%	
Supply Fans	1,051.92	0.22	8.19%	
Pumps	9.78	0.00	0.08%	
Lighting	3,492.55	0.73	27.20%	
Receptacle	137.65	0.03	1.07%	

*Primary Heating Cost/yr Includes Coal Cost

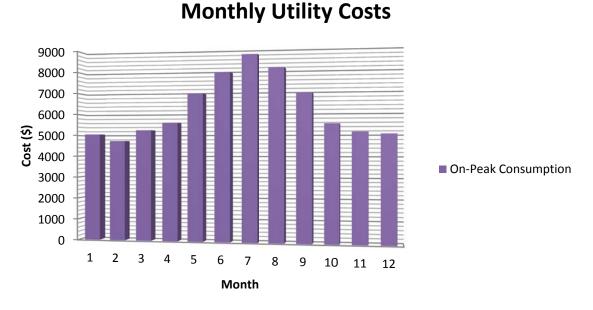

** Excludes Cooling Tower Load

Table 9. Annual Utility Cost Breakdown

Monthly Utility Usage

Graph 1. Monthly Utility Usage

Graph 2. Monthly Utility Cost

Of the electrical systems, lighting systems drew more power than the next leading load, supply fan power, by a factor of three. High lighting loads can be attributed largely to the 1500 and 1200W dining space luminaires. The load from pumps seems very low since cooling is required in the facility all year. However since heating relies more heavily on medium pressure steam, pumping loads are minimal.

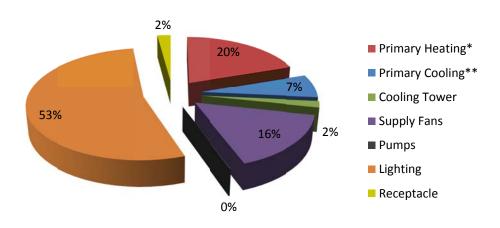


Chart 1. Electrical Cost Breakdown

System Emission Rates

With any production of energy via combustion, there will be by products that are potentially harmful to the environment. It is important to know how harmful a system can be and an emission study can often be helpful. The origin of the power supply should be examined first. Below, in Table 10 are the emission rates of pollutants created by local power generation in various regions of the United States. Ohio lies in the Eastern region. The pounds of pollutant created per year by Peirce Hall relative to the buildings yearly consumption rates can be found in Table 11.

Pollutant (lb)	National	Eastern	Western	ERCOT	Alaska	Hawaii
CO _{2e}	1.67E+00	1.74E+00	1.31E+00	1.84E+00	1.71E+00	1.91E+00
CO2	1.57E+00	1.64E+00	1.22E+00	1.71E+00	1.55E+00	1.83E+00
CH₄	3.71E-03	3.59E-03	3.51E-03	5.30E-03	6.28E-03	2.96E-03
N ₂ O	3.73E-05	3.87E-05	2.97E-05	4.02E-05	3.05E-05	2.00E-05
NOx	2.76E-03	3.00E-03	1.95E-03	2.20E-03	1.95E-03	4.32E-03
SOx	8.36E-03	8.57E-03	6.82E-03	9.70E-03	1.12E-02	8.36E-03
CO	8.05E-04	8.54E-04	5.46E-04	9.07E-04	2.05E-03	7.43E-03
TNMOC	7.13E-05	7.26E-05	6.45E-05	7.44E-05	8.40E-05	1.15E-04
Lead	1.31E-07	1.39E-07	8.95E-08	1.42E-07	6.30E-08	1.32E-07
Mercury	3.05E-08	3.36E-08	1.86E-08	2.79E-08	3.80E-08	1.72E-07
PM10	9.16E-05	9.26E-05	6.99E-05	1.30E-04	1.09E-04	1.79E-04
Solid Waste	1.90E-01	2.05E-01	1.39E-01	1.66E-01	7.89E-02	7.44E-02

Total Emission Factors for Delivered Electricity (Ib of pollutant per kWh of electricity)

Table 10. Total Emission Factors for Delivered Electricity (Table 3 of National Renewable Energy Laboratory, *Source Energy and Emission Factors for Energy Use in Buildings*, M. Deru and P. Torcellini, 2007.)

Eastern Interco	Eastern Interconnection Emissions for Delivered Electricity				
Pollutant	Mass of Emitted Pollutant (lbm)				
CO _{2E}	2,760,654.42				
CO_2	2,601,996.12				
N ₂ O	61.40				
NO _x	4,759.75				
SO _x	13,597.02				
PM10	146.92				

Table 11. Eastern Interconnection Emissions for Delivered Electricity

Next the pollutants emitted by the system should be considered. In the energy analysis run in Trane Trace, the steam plant was modeled as a coal fueled steam boiler. After running the analysis 74,239 therms was determined to be the total consumption value. With this and the assumption that 1 lb of bituminous coal produces 12.465 kBtu of energy (as defined by Energy Star) emitted pollutants can be calculated with Table 12. Results of these calculations can be found in Table 13.

			Commerce	cial Boiler		
Pollutant (lb)	Bituminous Coal *	Lignite Coal **	Natural Gas	Residual Fuel Oil	Distillate Fuel Oil	LPG
	1000 lb	1000 lb	1000 ft ³ ***	1000 gal	1000 gal	1000 gal
CO2e	2.74E+03	2.30E+03	1.23E+02	2.56E+04	2.28E+04	1.35E+04
CO2	2.63E+03	2.30E+03	1.22E+02	2.55E+04	2.28E+04	1.32E+04
CH₄	1.15E-01	2.00E-02	2.50E-03	2.31E-01	2.32E-01	2.17E-01
N ₂ O	3.68E-01	ND [†]	2.50E-03	1.18E-01	1.19E-01	9.77E-01
NOx	5.75E+00	5.97E+00	1.11E-01	6.41E+00	2.15E+01	1.57E+01
SOx	1.66E+00	1.29E+01	6.32E-04	4.00E+01	3.41E+01	0.00E+00
co	2.89E+00	4.05E-03	9.33E-02	5.34E+00	5.41E+00	2.17E+00
VOC	ND1	ND [†]	6.13E-03	3.63E-01	2.17E-01	3.80E-01
Lead	1.79E-03	6.86E-02	5.00E-07	1.51E-06	NDŤ	ND [†]
Mercury	6.54E-04	6.54E-04	2.60E-07	1.13E-07	ND †	ND †
PM10	2.00E+00	ND [†]	8.40E-03	4.64E+00	1.88E+00	4.89E-01

Emission Factors for On-Site Combustion in a Commercial Boiler (Ib of pollutant per unit of fuel)

* from the U.S. LCI data module: Bituminous Coal Combustion in an Industrial Boiler (NREL 2005)
** from the U.S. LCI data module Lignite Coal Combustion in an Industrial Boiler (NREL 2005)

*** Gas volume at 60°F and 14.70 psia.

[†] no data available

Appendix

A.1 Model Design Information

		De	sign We	ather Da	ta		
Weather Overric	des						
Summer Desig	gn Cooling						<u>0</u> K
	User C. Outerride	Standard © Default			MCWB		Cancel
Diy bulb	C Overnue	90	90.7	88.3	85.9	۴F	Help
Wet bulb		75	74.2	73.1	71.7	۴F	
	Г	Weather o	verrides appl	y to entire yea	ar?		
Winter Design	Heating						
Dıy bulb	User C Override	Standard C Default 5	• 99.6%	C 99%	۴F		
- Optional Direc	t Dehumidilic	ation Weathe	a				
		RAE MaxDP/					
None	0.4%	O 1%	0 2%				
Diy bulb	81.8	80.5	79.4	۴F			
Wet bulb	76	74.7	73.5	۴F			
Dew point	73.9	72.5	71.2	۴F			
Modeling N	Method Over	rride Design [) ay in Dsn Mo)+1 👻			
- Seasonal Valu	Jes						
		Summer	Winter				
Clearness		0.85	0.85				
Ground ref	flectance	0.2	0.2				
Outdoor carbon	dioxide level	400	ppm				

General Indoor Temperature Settings

Thermostat Tem	nplates - I	Project					
Alternative	Alternativ	ve 1		•			Apply
Description	Default			•			
Thermostat sett	tings						New
Cooling dry t	bulb	75	۴F				New
Heating dry	bulb	72	۴F				<u>Copy</u>
Relative hur	midity	50	%				Delete
Cooling drift;	point	90	۴F				Add <u>G</u> lobal
Heating drift	tpoint	55	۴F				
Cooling sche	edule	None			-		
Heating sch	edule	None			-		
Sensor Location	ns						
Thermostat		Room			-		
CO2 sensor		None			-		
Humidity							
Moisture cap	pacitance	None			•		
Humidistat lo	ocation	Room			•		
Internal Loa	ad _	ł	Airflow	<u>T</u> hermostat	Construc	tion	Boom

Sample Slab-on-Grade Floor and Grade Wall

Iternative	e 1									Apply
oom des	scription B04 Lo	ading Dock			-					Close
emplate:	s	Pa	rtition							
Room	Default		Partition • 1 Ta Partition • 2	g Pat	ition - 1			Adjacent	space temperature	New Partitio
Internal	Default	-		ngth 54	ft			Metho	d Sine Fit 💌	Copy Parl
Airflow	Default	-	He	ight 18	ft				Cooling 50	°F
Tstat	Default	•	Co	nstr			•		Heating 50	*F Delete Pa
Constr	Default	•	U-f	actor 0.08	57 Btu/	'nf€-°F	_			
		_	Ad	room < <n< td=""><td>o adjace</td><td>nt room>></td><td></td><td></td><td>Ŧ</td><td></td></n<>	o adjace	nt room>>			Ŧ	
		Flo	or							
			Floor 1 Ta	g Floo	r - 1			External t	emperature	Ne <u>w</u> Floo
				CE	xposed	 Slab on 	grade	Metho	d Hourly OADB	Copy Floo
			Co	nstr 12'	LW Con	D	Ŧ		Cooling	*F Delete Flor
			Are	ea 0	ff²	U-factor	0	Btu/h·ft ^{e.} *F	Heating	*F
			Pe	rim 40	ft	Loss coef	f 0.05	Btu/hr-ft-*F		
			Ad	i room < <n< td=""><td>o adjace</td><td>nt room>></td><td></td><td></td><td>Ŧ</td><td></td></n<>	o adjace	nt room>>			Ŧ	

Sample Air Flow Template

Alternative	1					Adjacent air transfe	r from room	Ap	ply
Room dese	cription L32 Admi	in Office			< No adjace	ent air trans>>		▼ <u>C</u> ar	ncel
femplates.			Main supply			Auxiliary su	pply		
Room	Default	-	Cooling		To be calculated	 Coolin 	g	To be calculated	1
Internal	Default	-	Heating		To be calculated	 Heating 	ig 🗌	To be calculated	
Airflow	Default	•	Ventilation			_	004/2007		_
Tstat	Default	-		_		=	Custom	<u></u>	_
Constr	Default	•	Type Cooling	Genera 20		▪ Htg E: ▪ Er	2 Custom	ased on system typ 💌	_
			Heating	20		-	fin OA Intal		
			Schedule	Availat		- Room exha	aust	, ,	
			Infiltration		-	Rate	0	cfm	
			Туре	Neutra	l, Tight Const.	- Schei	lule Availa	ble (100%)	
			Cooling	0.3	air changes/hr	VAV minim	um		
			Heating	0.3	air changes/hr	 Rate 		% ClgAirflow	
			Schedule	Availat	ble (100%)	- Scher	lule Availa	ble (100%)	
						Туре	Defau	lt	

Sample Interior Load Template

Create R Itemative	tooms - Interna	I Loads								Apply
oom des	cription L01 Me	emorial Stair Towe	r			•				Cancel
emplates	ú.									
Room	Default	▼ Pe	ople A	Activity	Cafeteria		Density	People	•	
Internal	Default	•	S	chedule	Cooling&Heatin	g			-	
Airflow	Default	•	S	ensible	275 Btu/h		Latent 275	Btu/h		
Tstat	Default	▼ Wo	orkstalior	ns						
Constr	Default	•	C	ensity	1 work	station/person	•			
	Lights	Туре	Reces	sed fluor	escent, not vent	ed, 80% load to	space		•	
	-	Heat gain		W/sq f			Cooling Only (Desig	jn)	-	
1	Miscellaneous lo	ads								
	Misc Load 1	Tag	Mise L	.oad 1		Туре	None		-	New Loa
		Energy	0	W/sq f	•	Schedule	Cooling Only (Desig	gn)	-	Сору
		Energy meter	None		•					Delete
Sincle 9	Sheet	Rooms		Roofs	v	/alls	Int Loads	Airflows	P	artn/Floors

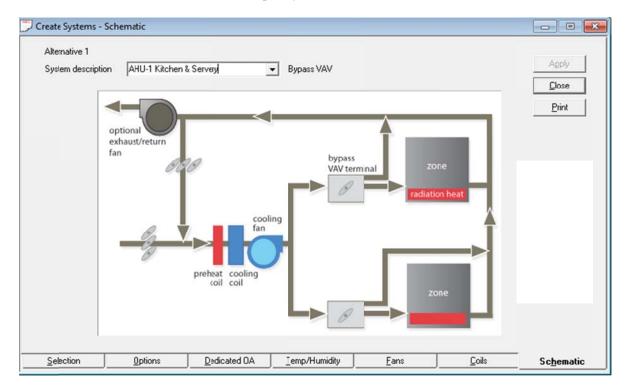
October	Technical Report II
27, 2010	Rami Moussa
	Mechanical Option

Schedule Template

Schedule Libr	ary						[
Schedule type Description Simulation type Comments January - Dece Heating design	Utilization Cooling&Heating Reduced year Full year (day types only) mber Cooling design t		Schedule Month Day type	Definition Start January Cooling des Start time Midnight	End time Midnight	End December Sunday Percenta	▼ ▼ age ▲	<u>S</u> ave <u>C</u> ancel <u>New Schec</u> <u>Del Sched</u> <u>New Definitic</u> Copy Definitic
	D <u>el</u> Definition							
Reset and locks	out table Sensor type	Op	Re	set		Offset	And	
NOTE: The rese	et and lockouts are available <u>Schedule</u>	for the following	g: Design phase in simulaton sche	nfiltration, ventila dules.	ation, reheat n	ninimum, and all <u>G</u> raphs		
·	Tenedara			`				

Sample Exterior Wall Template

Create Roo	ms - Walls								Apply
Room descrip	tion L32 Admin Office			•				ĺ	<u>C</u> lose
Internal De Airflow De Tstat De	sfault			48.67 ft 11.5 ft 1		8" LW Block, 2 J-factor 0.085 Tilt 0 Direction 90 %	_	•	New Wall Copy Wall Delete Wall
		Openings Opening - 1	Tag Openir Wall area Length U-factor Shading	0 % 4 ft	Туре	♥Window (1"insul.glass Height 7.33 Sh.Coef 0.44	Door ft Quantity 4 Ld to RA 0	*	New Opening Copy Opening Delete Opening
Single She	et Rooms	Roofs	Internal External	None Overhang Walls		nt Loads	Airflows	• • Pa	rtn/Floors


Sample Roof Template

Create Rooms - Roofs					
Alternative 1 Room description 117 Servery Temolates	Roof	•			Apply Close
Rcom Default Internal Default Airlow Default Tstat Default Constr Default	Roof -1 Stylight	Length 12 ft	Pitch 90 d Direction 0 d	እነመ/ት በዶ-°F leg Stu/ት በዶ-°F	New Roof Cgpy Delete
	Shading	Internal None			¥
Single Sheet Rooms	Roofs	<u>₩</u> alls	Int Loads	Airflows	Partn/Floors

Sample Room Template

Create F	Rooms - Rooms								-	
Alternative	e 1									Apply
Room des	cription 117 Ser	very			•	Design				<u>C</u> lose
Templates	t	9	bize			Cooling dry bulb	75	۴F		
Room	Default	-	Lergth	5002	ft	Heating dry bulb	72	۴F		New Room
Internal	Default	-	Width	1	ft	Relative humidity	50	%		Сору
Airflow	Default	• H	leight			Thermostat				
Tstat	Default	-	Flowr to floor	16	ft	Cooling driftpoint	90	۴F		Delete
Constr	Default	-	Plenum	4	ft	Heating driftpoint	55	۴F		
			Above ground		ft	Coolng schedule	None		-	
		Duplicate	Floor multiplier	1		Heating schedule	None		-	
			Rooms per zone	1		Sensor Locations				
	Room mass	/avg time lag	Time delay based on	actual ma:	•	Thermostat	Room		•	
	Slab con	struction type	4" LW Concrete		•	CO2 sensor	None		-	
		Room type	Conditioned		•	Humidity				
	Acoustic ceili	ng resistance		u		Moisture capacitance	None		•	
		Carpeted [Humidistat location	Room		•	
<u>S</u> ingle S	Sheet	<u>R</u> ooms	Roofs		<u>₩</u> alls	Int Loads		Airflows	E	artn/Floors

Sample System Schematic

Sample System Fan Override

System description AHL	U-1 Kitchen & Servery 🔹	f 🖂				
ter i fan de la companya de la comp	• I Richell & Servey	Bypass V	AV			Apply
Fan cycling schedule No	fan cycling 💌	[<u>C</u> lose
						<u>O</u> verrides
	Туре	Static Pressure (in. wg)	Full Load Energy Rate	Full Load Energy Rate Urits	Schee	dule
Primary FC	Centrifugal vav/inlet vn	2	0.00032	kW/Cfm·in wg	Available (100%)	
Secondary Nor	ne			kW/	Available (100%)	
Return FC	Centrifugal vav/inlet vn	1.5	0.00032	kW/Cfm-in wg	Available (100%)	
System exhaust Nor	ne	0	0	k₩	Available (100%)	
Room exhaust Nor	ne	0	0	k₩	Available (100%)	
Optional ventilation Nor	ne	0	0	kW	Available (100%)	
Auxiliary Nor	ne	0	0	k₩	Available (100%)	
	90.1 Primary Fan ⁹ ower Adjustment	0	in. wg			

Cooling Plant Equipment Model

Create Plants									
Cooling Equipment - Alter	native 1			Heat Reje	ction				
Cooling plant	Cooling plant - 001			Туре	Type Cooling Tower w/ 12* Range				
Equipment tag	Air-cooled chiller - 001			Hourly ar	Close				
Category	Air-cooled chiller								
Equipment type	Air Cooled Scroll Chiller			Thermal S	New Equip				
Sequencing type	Single Heat rejection equipment			Туре	None		-	Copy Equip	
Energy source				Capacity	0	ton-hr	Ŧ		
Reject condenser heat				Schedule	Storage		Ŧ	<u>D</u> elete Equip	
Reject heat to plant	_							Controls	
Operating mo	de		Capacity			Energyrate		Packaged	
Cooling		241 tons			0.69	kW/lon		Energy Breakout	
Heat recovery	Heat recovery		tons			kW/lon		breakout	
Tank charging			tons		kW/lon				
Tank charging & heat reco	overy		tons			kW/lon			
Pumps		Туре		Full load consumption		n			
Primary chilled water	Primary chilled water		Cnst volchill water pump			ft water			
Condenser water		None			0	ft water			
Heat recovery or aux cond	denser	None			0	ft water			
Configuration		Cooling Equipment			Heating Equ	uipment	<u>B</u> ase Utility /	Misc. Accessory	

Heating Plant Equipment Model

	nt - Alternative 1			Thermal Sto	orage			
Heating plant	Heating plant - 00	2	•	Туре	None		•	Apply
Equipment tag	Boiler - 001		-	Capacity	0	ton-hr	Ŧ	Close
Category	Boiler		•	Schedule	Storage		Ŧ	
Equipment type	Coal Fired Steam	Boiler	•					<u>N</u> ew Equip
				Controls				Copy Equip
Capacity	2500 Mbł	1	•	E quipment schedule	Available	e (100%)	•	Delete Equip
Energy rate	83.3 Per	cent efficient	•	Demand in	miting priorit	y 🗌		
Hot Water Pump								
Туре	None		•					
Full load consumption	0 ft w	ater	~					

October	Technical Report II
27, 2010	Rami Moussa
	Mechanical Option

Sample Economic Data Template

Rate Str	ucture Library				
Description Comments Defined rate	This is a sample utility rate.	×	Rate Definition Utility Minimum charge Start pericd End period	Electric demand January December	Save Close
Electric Gas On Water Electric	Electric demand Off peak January - December Electric consumption Off peak January - December		Rate type Minimum demand Fuel adjustment Customer Charge kWh/kW flag Rate schedule (\$	Copy Structure	
	D <u>e</u> l Definition		Ra \$8.1300	te Cutoff	

System	Cooling [ft ² /ton]		Difference	Heating [Btu/h-ft ²]		Difference	Total Supply Air [cfm/ft ²]		Difference	Ventilation Supply [cfm]		Difference
	Analysis	Design		Analysis	Design		Analysis	Design		Analysis	Design	
AHU-1 Kitchen/Servery	191.6	265.5	-27.83%	40.63	29.29	38.72%	1.74	1.37	27.01%	3530	2095	68.50%
AHU-2 Pub/Great Hall	113.3	135.3	-16.26%	102.74	103.2	-0.45%	3.14	2.78	12.95%	10840	9200	17.83%
AHU-3 Tower	276.9	314.7	-12.01%	49.4	42.82	15.37%	1.26	1.23	2.44%	2952	1797	64.27%
AHU-4 Dining Hall	151	130.2	15.98%	63.53	69.82	-9.01%	2.14	2.36	-9.32%	14306	14965	-4.40%
AHU-5 Catering Make-Up	0	0	0.00%	636.7	636	0.11%	8.34	8.33	0.12%	7500	7500	0.00%
AHU-6 Servery Make-Up	0	0	0.00%	158.68	152.87	3.80%	2.08	2	4.00%	10400	10400	0.00%
AHU-7 Loading Dock B04	0	0	0.00%	3.39	17.6	-80.74%	0.02	0.26	-92.31%	38	55	-30.91%
FCU-1 Bemis Music Room	132.3	140.3	-5.70%	102.47	111.06	-7.73%	3.5	3.18	10.06%	1079	1079	0.00%
CUH Mechanical Room	0	0	0.00%	3.02	11.82	-74.45%	0.05	0.21	-76.19%	0	0	0.00%
CUH Non-Cooled Spaces	0	0	0.00%	7.95	16.87	-52.87%	0.09	0.16	-43.75%	801	304	163.49%
CUH Stairs	0	0	0.00%	39.51	68.73	-42.51%	0.62	1.14	-45.61%	106	93	13.98%
CUH Storage	0	0	0.00%	20.55	58.05	-64.60%	0.24	0.84	-71.43%	148	56	164.29%

A.2 Computed vs. Design Document Load and Ventilation Indices